Lecture 13. Synonimous and non-synonimous rates. Two tests of neutrality. Recombination and polymorphism.

4.7 Synonimous and non-synonimous rates

Genetic code is redundant Table 8.2, p. 339

three types of sites: 0 = non-degenerate site

2 = two-fold site and 4 = four-fold site

At a two-fold site $\frac{1}{3}$ of substitutions are synonimous

Effective numbers of sites

$$l_s=l_4+\frac{1}{3}\cdot l_2$$
 and $l_n=l_0+\frac{2}{3}\cdot l_2$ total length $l=l_0+l_2+l_4=l_s+l_n$

Fig 8.12, p. 341 and Fig 8.13, p. 342

different substitution rates $\lambda_s = \frac{d_s}{2t}$ and $\lambda_n = \frac{d_n}{2t}$ $d_s = \frac{\text{synonimous changes}}{l_s}$ and $d_n = \frac{\text{nonsynonimous changes}}{l_n}$ Usually $\lambda_s > \lambda_n$ because of deleterious mutations

Fig 8.14, p. 343: mammalian nuclear DNA rates

Neutrality:
$$\lambda_s = \lambda_n$$
, positive selection: $\lambda_s < \lambda_n$

Genome averages

Wide variety of unconstrained substitution rates λ_s

plant chloroplast DNA	$1 \cdot 10^{-9}$
mammalian nuclear DNA	$3.5 \cdot 10^{-9}$
plant nuclear DNA	$5 \cdot 10^{-9}$
E.coli and Salmonella enterica bacteria	$5 \cdot 10^{-9}$
Drosophila nuclear DNA	$1.5 \cdot 10^{-8}$
mammalian mitochondrial DNA	$5.7 \cdot 10^{-8}$
HIV-1	$6.6 \cdot 10^{-3}$
Influenza A virus	$1.3 \cdot 10^{-2}$

Ex 2: bacterial gene

Observed differences per site

$$d_s = \frac{7}{10+12/3} = 0.5, d_n = \frac{2}{38+12\cdot 2/3} = 0.04$$
 uncorrected estimates $\tilde{\lambda}_s = 3.1 \cdot 10^{-9}, \ \tilde{\lambda}_n = 0.3 \cdot 10^{-9}$

Positive selection evidence

in a study of 3595 groups of homologous sequences only 17 groups with λ_n/λ_s significantly larger than 1 many of these are sex-related genes (favor speciation)

In some immunoglobulin genes

 $\lambda_n/\lambda_s > 1$ in certain regions overdominant selection for antibody diversity

4.8 Two tests of neutrality

H₀: observed polymorphism is due to selective neutrality of mutations and not due to natural selection

McDonald-Kreitman test

Chi-square test of homogeneity comparing two pairs of numbers of (synonimous, non-synonimous) differences

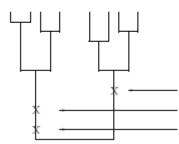
- 1. fixed differences between species
- within species polymorphic sites

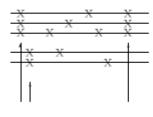
Reject the null hypothesis of neutrality

if two distributions are significantly different

Ex 12: G6PD gene in Drosophila

12 alleles in D.yakuba and 6 alleles in D.simulans


differences	between species	within species	total
synonymous	17(20.3)	29(25.7)	46
nonsynonymous	6(2.7)	0(3.3)	6
total	23	29	52


Excess of nonsynonimous fixed differences

positive selection of advadtageous nonsyn. mutations

$$X^2 = 8.6$$
, df = 1, $\sqrt{8.6} = 2.93$, $P = 0.0034$, reject H_0

D. yakuba D. simulans

fixed differences

Tajima test

tests neutrality using polymorphisms in one species compares two estimates of θ : $\hat{\theta} = S/a_1$ and π S and π react differently on presence of selection S examines the number of polymorphic sites π assesses the site frequences p_A , p_G , p_T , p_C

Very unequal p_A , p_G , p_T , p_C imply smaller π almost equal p_A , p_G , p_T , p_C imply larger π

Ex 13: configuration and nucletide diversity

$$n = 12, l = 1$$
, number of pairs of sequences $\binom{12}{2} = 66$

config	(10,1,1,0)	(9,1,1,1)	(6,3,2,1)	(4,3,3,2)	(3,3,3,3)
#(pmm)	21	30	48	53	54
π	0.318	0.455	0.727	0.803	0.818

Tajima test statistic

Under hypothesis of neutrality
$$Var(\pi - \frac{S}{a_1}) = \frac{c_1\theta}{l} + c_2\theta^2$$

where $c_1 = b_1 - \frac{1}{a_1}$, $c_2 = b_2 - \frac{n+2}{a_1n} + \frac{a_2}{a_1^2}$

$$D = \frac{\pi - S/a_1}{\sqrt{e_1 S + e_2 S(S - 1/l)}}$$
, where $e_1 = \frac{c_1}{a_1}$, $e_2 = \frac{c_2}{a_1^2 + a_2}$

Null distribution of Tajima's D is tabulated by simulation might be approximated by a Beta distribution

Significant D > 0 means almost equal p_A , p_G , p_T , p_C : either balancing selection (overdominance) or diversifying selection when rare alleles are favored

Significant D < 0 means very unequal p_A , p_G , p_T , p_C : either selection against rare alleles or recent bottleneck implying reduced genetic variation

4.9 Recombination and polymorphism

Fig 5.9, p. 182: evolutionary benefit of recombination Fig 5.10, p. 183: low recomb. rate → low polymorphism Hitchhiking

Fig 8.20, p. 355: hitchhiking (selective sweep) example advantageous mutation results in reduced number of segregating sites in tightly linked region

Background selection

reduced diversity at a neutral locus tightly surrounded by many loci of harmful mutations

Literature:

- 1. D.L.Hartl, A.G.Clarc. Principle of population genetics. Sinauer Associates, 2007.
- 2. R.Nielson, M. Statkin. An introduction to population genetics: theory and applications, Sinauer Associates. 2013.